## Anonymity loves Diversity: The Case of Tor

Georg Koppen Alexander Færøy November 1, 2020

**FOSS North** 



- Started volunteering around 2010
- Core Developer at The Tor Project since 2013
- Led the Tor Browser team from 2016-2019
- Transitioned to network health work in 2020



#### About Alexander

- Core Developer at The Tor Project since early 2017.
- Free Software developer since 2006.
- Worked with distributed systems in the Erlang programming language, WebKit-based mobile web browsers, consulting, and firmware development.
- Co-organizing the annual Danish hacker festival BornHack.



## What is Tor?

- Online anonymity, and censorship circumvention.
  - Free software.
  - Open network.
- Community of researchers, developers, users, and relay operators.
- U.S. 501(c)(3) non-profit organization.



#### History

**Early 2000s** Working with the U.S. Naval Research Laboratory. Sponsorship by the Electronic Frontier Foundation. 2004 The Tor Project, Inc. became a non-profit. 2006 2008 Tor Browser development. The Arab spring. 2010 The summer of Snowden. 2013 2018 Anti-censorship team created. Tor Browser for Android released. 2019 Network Health team created. 2020



#### Somewhere between 2,000,000 and 8,000,000 daily users.



#### A Simple Design



Equivalent to some commercial proxy providers.

## A Simple Design



#### A Simple Design



Timing analysis bridges all connections going through the relay.



Add multiple relays so that no single relay can betray Alice.



Alice picks a path through the network:  $R_1$ ,  $R_2$ , and  $R_3$  before finally reaching Bob.



#### Alice makes a session key with $R_1$ .



#### Alice asks $R_1$ to extend to $R_2$ .



#### Alice asks $R_2$ to extend to $R_3$ .



#### Alice finally asks $R_3$ to connect to Bob.

#### Anonymity isn't Encryption



#### Encryption just protects contents.

#### Metadata



"We Kill People Based on Metadata."

-Michael Hayden, former director of the NSA.

## Bridges



## Bridges



#### Bridges and Pluggable Transports



- Allows people to easily build, experiment, and deploy their own obfuscation technology without having to modify the Tor source code itself.
- The specification for Pluggable Transports is open and allows other vendors to implement support for PTs in their own products.
- Allows people to experiment with different transports for Tor that might not be doing any anti-censorship related obfuscation.

- Makes it hard for passive DPI to verify the presence of the obfs4 protocol unless the adversary knows the bridge parameters.
- Makes active probing hard unless the adversary knows the bridge parameters.
- Uses Tor's ntor handshake (x25519), but uses Elligator2 to encode the elliptic-curve points to be indistinguishable from uniform random strings. The link layer encryption uses NaCl secret boxes (XSalsa20 and Poly1305).

#### SNI Domain Fronting using Meek



#### Snowflake



- An open network everybody can join!
- Between 6000 and 7000 relay nodes.
- Kindly hosted by various individuals, companies, and non-profit organisations.
- 9 Directory Authority nodes and 1 Bridge Authority node.

#### **Total Relay Bandwidth**



Source: metrics.torproject.org

Number of Relays



Source: metrics.torproject.org

Tor's **safety** comes from **diversity**:

- 1. Diversity of relays. The more relays we have and the more diverse they are, the fewer attackers are in a position to do traffic confirmation.
- 2. Diversity of users and reasons to use it. 50,000 users in Iran means almost all of them are normal citizens.

**Research problem**: How do we measure diversity over time?

Number of Relays per Platform



Source: metrics.torproject.org

| #  | Country                   | Relays |
|----|---------------------------|--------|
| 1  | Germany                   | 1517   |
| 2  | United States             | 1114   |
| 3  | France                    | 677    |
| 4  | Netherlands               | 359    |
| 5  | Canada                    | 256    |
| 6  | United Kingdom            | 246    |
| 7  | Switzerland               | 193    |
| 8  | Sweden                    | 191    |
| 9  | <b>Russian Federation</b> | 187    |
| 10 | Lithuania                 | 179    |
| 22 | Norway                    | 69     |
| 27 | Denmark                   | 44     |





| Network        | Relays |
|----------------|--------|
| 185.220.0.0/16 | 216    |
| 51.81.0.0/16   | 97     |
| 51.15.0.0/16   | 87     |
| 185.150.0.0/16 | 68     |
| 163.172.0.0/16 | 59     |
| 172.105.0.0/16 | 57     |
| 95.216.0.0/16  | 56     |
| 195.189.0.0/16 | 55     |
| 51.195.0.0/16  | 49     |
| 51.91.0.0/16   | 40     |

| AS Number | Name                                          | Relays |
|-----------|-----------------------------------------------|--------|
| AS 16276  | OVH, FR                                       | 770    |
| AS 24940  | HETZNER-AS, DE                                | 403    |
| AS 12876  | Online SAS, FR                                | 263    |
| AS 63949  | LINODE-AP Linode, LLC, US                     | 240    |
| AS 14061  | DIGITALOCEAN-ASN, US                          | 166    |
| AS 208294 | ASMK, NL                                      | 140    |
| AS 197540 | NETCUP-AS netcup GmbH, DE                     | 138    |
| AS 53667  | PONYNET, US                                   | 136    |
| AS 3320   | DTAG Internet service provider operations, DE | 118    |
| AS 16125  | CHERRYSERVERS1-AS, LT                         | 104    |

Malicious relays and what we (plan to) do about them:

- Malicious guard+exit relays (Guard pinning, MyFamily settings)
- Malicious exit relays
  - Exit scanning (e.g. against SSL strip attacks)
  - Blacklisting found relays (but: that's an uphill battle)
  - Application-level improvements (HTTPS-only mode)
  - Limit weight/influence of unknown relays



- Many users with different backgrounds helps against singling individuals out
- But how do we prevent all those users from getting fingerprinted due to their different computers?
  - Make everyone look the same
  - Obscure real values by spoofing/faking them

#### **Applications**

• Many users with different backgrounds helps with usability, privacy protections, and security



#### Applications

• There are downsides we have to deal with, e.g. user blocking or CAPTCHAs



Possible mitigations to Tor blocking:

- Outreach? (but that does not scale)
- PoW schemes? (might help against onion service DoS, too, see: proposal 327)
- Anonymous credentials?
- Paid exit relays?

#### How can you help?

- Hack on some of our cool projects.
- Find, and maybe fix, bugs in Tor.
- Test Tor on your platform of choice.
- Work on some of the many open research projects.
- Run a Tor relay or a bridge!
- Teach others about Tor and privacy in general.





#### Donate at donate.torproject.org

# **Questions?**



This work is licensed under a

Creative Commons Attribution-ShareAlike 4.0 International License

