
Everyday Cryptography

Alexander Færøy

The Camp

July 26, 2016

mailto:ahf@0x90.dk

Table of Contents

Cryptographic Primitives
Hash Functions
Secret-Key Algorithms
Public-Key Algorithms

Protocols
Pretty Good Privacy
Transport Layer Security
Transport Layer Security
O� The Record
Signal

Post-quantum Cryptography
Shor’s Algorithm
Grover’s Algorithm
SPHINCS-256
New Hope

1

Cryptographic Primitives
Entropy

/dev/random and /dev/urandom.

2

Cryptographic Primitives
Bits of Security

▸ To help comparing systems and pick "compatible" building blocks, we measure
cryptosystems in bits of security.

▸ The number of bits is used to describe the amount of work an adversary will have to
complete before they will be able to compromise or weaken our system.

3

Cryptographic Primitives
Xor

0⊕ 0 = 0
0⊕ 1 = 1
1⊕ 0 = 1
1⊕ 1 = 0

4

Cryptographic Primitives
Xor

"foobar"⊕ "abcdef" = 7, 13, 12, 6, 4, 20

7, 13, 12, 6, 4, 20⊕ "abcdef" = "foobar"

5

Hash Functions

▸ A cryptography hash function is a
function that takes an arbitrary length
input and returns a �xed length output.

▸ Computing y = f (x) should be "fast", but
computing the inverse function
x = f ′(y)must beNP-hard.

▸ Even minor, single bit, modi�cations to
the input must yield a di�erent output
value.

▸ As of 2016, we mostly use SHA-2 and
newer functions in our protocols.

▸ Do NOT use MD5, RIPEMD-160, and SHA-1
anywhere.

▸ For new code: Use SHA-3.

"Hello world"

Hash

ZOyIygCyaOW6Gj...

6

Passphrase Hashing

▸ Commonly used for passphrase storing and for deriving keys for disk encryption.
▸ Currently very popular algorithm is: PBKDF2 with a salt.
▸ Modern choices: Argon2 and scrypt.
▸ One must be careful when making the choice of function since DoS attacks might
become possible.

https://password-hashing.net/
7

https://password-hashing.net/

Secret-Key Algorithms

▸ A crypto system where both parties must agree on a key before they can exchange
encrypted data.

▸ The oldest cryptography systems we have.

8

Camp Cipher

$ python
>>> import camp
>>> camp.encrypt("foobar", "Hello world!")
'LgoDDg5SEQAdDgVT '

>>> camp.decrypt("foobar", "LgoDDg5SEQAdDgVT")
'Hello world!'

9

Camp Cipher

import base64

def stream(key , message):

key_length = len(key)
i = 0

r = ""

for char in message:

r += chr(ord(char) ^ ord(key[i % key_length]))

i += 1

return r

def encrypt(key , message):

return base64.b64encode(stream(key , message))

def decrypt(key , message):

return stream(key , base64.b64decode(message))

10

Advanced Encryption Standard

▸ Originally named Rijndael after its
inventors Joan Daemen and Vincent
Rijmen.

▸ Published in 1998.
▸ Won the AES competition in 2001 and
thus superseded the Data Encryption
Standard.

▸ Worth mentioning: Serpent.
▸ CPU support in modern Intel CPU’s.
Allows us to do around 1 GB/sec of AES.

Joan Daemen and Vincent Rijmen.

11

Advanced Encryption Standard
ECB Mode

EK

p0

c0

EK

p1

c1

EK

p2

c2

⋯ EK

pn

cn

12

Advanced Encryption Standard
ECB Mode

Original image. Encrypted with ECB mode. Encrypted with a secure mode.

13

Advanced Encryption Standard
CBC Mode

pn

EK

cn

⋯

cn−1

p2

EK

c2

p1

EK

c1

p0

EK

c0

IV

14

Advanced Encryption Standard
CTR Mode

EK

IV

c0

p0

EK

IV ⊕ 1

c1

p1

EK

IV ⊕ 2

c2

p2

⋯ EK

IV ⊕ n

cn

pn

15

Public-Key Algorithms

▸ Each party have two keys: a secret key and a public key. The public key can be published,
the secret key must remain secret.

▸ Was a major milestone in the 70ies where it became possible.
▸ Often used together with secret key algorithms.

16

Di�e-Hellman Key Exchange

▸ Di�e-Hellman key exchange is an
algorithm for establishing a secret key
over an insecure, public, communication
channel.

▸ The cryptosystem was published by
Whit�eld Di�e and Martin E. Hellman in
1976, but was discovered by James H. Ellis,
Cli�ord Cocks, and Malcolm J. Williamson
from GCHQ in 1975, but the discovery was
kept secret until 1997.

▸ Uses the discrete log problem: gx

(mod p) is hard to reverse.
▸ Whit�eld Di�e and Martin E. Hellman
was awarded the A.M. Turing Award in
2015 for their work on cryptography.

Martin E. Hellman and Whit�eld Di�e.

17

Di�e-Hellman Key Exchange

Alice Bob

x ←$Zq

gx

y ←$Zq

g y

k← (g y)x k← (gx)y

18

Di�e-Hellman Key Exchange

Alice Eve Bob

x ←$Zq

gx

a ←$Zq

ga

y ←$Zq

g y

b ←$Zq

gb

ka ← (gb)x ka ← (gx)b
kb ← (gx)a kb ← (ga)y

19

Di�e-Hellman Key Exchange

import random

class DH(object):
def __init__(self , g, p):

self._g = g

self._p = p

def keypair(self):

secret = random.randint(self._g + 1,

self._p - 1)

public = pow(self._g, secret , self._p)

return (secret , public)

def shared(self , secret , public):

return pow(public , secret , self._p)

20

Di�e-Hellman Key Exchange

$ openssl dhparam -out params.pem 2048
Generating DH parameters , 2048 bit long safe prime ,

generator 2

This is going to take a long time

..++*++*

21

Di�e-Hellman Key Exchange

$ openssl dhparam -out params.pem 2048
Generating DH parameters , 2048 bit long safe prime ,

generator 2

This is going to take a long time

..++*++*

$ openssl asn1parse -in params.pem
0:d=0 hl=4 l= 264 cons: SEQUENCE

4:d=1 hl=4 l= 257 prim: INTEGER :E490 ...
265:d=1 hl=2 l= 1 prim: INTEGER :02

22

Di�e-Hellman Key Exchange

$ openssl dhparam -out params.pem 2048
Generating DH parameters , 2048 bit long safe prime ,

generator 2

This is going to take a long time

..++*++*

$ openssl asn1parse -in params.pem
0:d=0 hl=4 l= 264 cons: SEQUENCE

4:d=1 hl=4 l= 257 prim: INTEGER :E490 ...
265:d=1 hl=2 l= 1 prim: INTEGER :02

$ python3 dh.py 02 E490 ...
Alice 's Public Key: 3276 ...
Bob 's Public Key: 2522 ...
Shared Secret: 7481 ...

23

RSA

▸ Published in 1977.
▸ Supports both encryption and signatures.
▸ Usually combined with secret key
cryptosystems.

▸ Rivest, Shamir, and Adleman was
awarded the A.M. Turing Award in 2002
for their work on public-key
cryptography.

▸ Large keys: 2048 to 4096 bits today.
▸ Build using prime factorization.

Adi Shamir, Ronald L. Rivest, and Leonard M.
Adleman.

24

Curve25519 Key Exchange

▸ Published in 2006 by Daniel J. Bernstein.
▸ ECDH function used to establish a secure
channel over an insecure connection.

▸ 32 bytes public keys, 32 bytes secret keys,
32 bytes shared secrets.

▸ Key generation is very simple:

secret = os.urandom (32)

secret [0] &= 248

secret [31] &= 127

secret [31] = 64

Daniel J. Bernstein.

https://cr.yp.to/ecdh.html
25

https://cr.yp.to/ecdh.html

Ed25519

▸ Publised in 2011 by Daniel J. Bernstein,
Niels Duif, Tanja Lange, Peter Schwabe,
and Bo-Yin Yang.

▸ Signatures are 64 bytes, public keys are 32
bytes, secret keys are 64 bytes.

▸ Provides 2128 bits of security. Equivalent
to a 3000 bits RSA key.

▸ Can generate around 100.000 signature
signatures per second.

▸ Veri�cation performance is bounded by
hashing.

▸ Key generation performance is partially
bounded by the time it takes to read
from /dev/urandom.

▸ Designed with focus on not relying on
branch conditions when working with
the secret key.

Daniel J. Bernstein.

Tanja Lange.

http://ed25519.cr.yp.to/
26

http://ed25519.cr.yp.to/

Ed25519

$ gpg2 --fingerprint 0xE15081D5D3C3DB53
pub ed25519 /0 xE15081D5D3C3DB53 2015 -02 -14 [SC] [expires: 2020 -02 -28]

Key fingerprint = E265 2A9B 5D17 14B5 5CE3 ADE1 E150 81D5 D3C3 DB53
uid [ultimate] Alexander Faeroey (Code Signing Key) <ahf@0x90.dk>

27

Pretty Good Privacy

▸ Published in 1991 by Phil Zimmermann.
▸ Supports RSA, DSA, ElGamal, Ed25519,
and AES.

▸ Veri�cation using web-of-trust and by
having people attending keyparties.

▸ Used for email encryption and
authentication and package
authentication.

▸ Was in the 90ies a�ected by the US
export laws on cryptography.

Philip R. Zimmermann.

https://gnupg.org/
28

https://gnupg.org/

Transport Layer Security

1. Client connects over TCP to a server, sends random number, and a list of supported
cipher suites.

2. Server sends random number, public key and certi�cate.

3. If supported, the server sends the DH parameters.

4. Client sends random session key, encrypted to the server’s public key.

5. Client sends DH parameters.

6. Moves to secret key communication.

29

Transport Layer Security

OpenSSL and LibreSSL.

30

O� The Record

▸ End-to-end Encryption for instant
messaging (Jabber, Facebook, Google
Chat).

▸ Provides encryption, authentication,
deniability, and forward secrecy.

▸ Authentication is done with �ngerprint
veri�cation (like with PGP) or Socialist
Millionaires’ Protocol.

▸ Uses Discrete Log Di�e-Hellman, AES-128,
DSA, SHA-1 and SHA-256.

▸ Work is being done onmoving to Ed25519,
Curve25519 and a stronger hash function.

Ian Avrum Goldberg.

https://otr.cypherpunks.ca/
31

https://otr.cypherpunks.ca/

Signal

▸ Uses Curve25519, 3-DH, HMAC-SHA256
and AES.

▸ Provides forward secrecy and backward
secrecy.

▸ The protocol was originally named
Axolotl.

▸ No focus on anonymity.

Moxie Marlinspike.

32

Post-quantum Cryptography

▸ Cryptographers have recently started focusing on cryptography that will work in a world
where an adversary have access to a quantum computer.

▸ RSA is dead, DSA is dead, elliptic and hyperelliptic curves are dead, and discrete
logarithm Di�e-Hellman is dead.

▸ Secret key cryptography still works.
▸ Weakest link in a chain: If your handshake was made using DH and you use the key for a
secret key system it will be dead too.

▸ Current PGP, Tor, TLS, and Signal will be a�ected.

https://pqcrypto.org/
33

https://pqcrypto.org/

Shor’s Algorithm

▸ Formulated in 1994 by Peter Shor.
▸ Quantum algorithm for integer
factorization: "given an integer, N �nd its
prime factors".

▸ In 2012, researches was able to factorize
21 into 3 and 7.

▸ Will break current RSA usage, if we have
access to a 2048 to 4096 qubit quantum
computers.

Peter Williston Shor.

34

Grover’s Algorithm

▸ Formulated in 1996 by Lov Grover.
▸ Probalistic quantum algorithm for �nding
the unique input to a given blackbox
function.

▸ Classical computers can do this operation
inO(N) and due to Grover’s algorithm,
quantum computers will be able to do it
inO(N 1/2

).
▸ Will weaken secret key cryptography like
AES, by reducing the security. Lov Kumar Grover.

35

SPHINCS-256

▸ Published by Daniel J. Bernstein, Daira
Hopwood, Andreas Hülsing, Tanja Lange,
Ruben Niederhagen, Louiza
Papachristodoulou, Michael Schneider,
Peter Schwabe, and Zooko
Wilcox-O’Hearn in 2014.

▸ Very large signatures: 41.000 bytes, public
and secret keys are at 1024 bytes each.

▸ Aims at providing 2128 bits of
post-quantum security.

▸ Can be used as a drop in replacement for
already established systems. For example
RSA or ed25519 signatures.

▸ Is able to sign hundreds of messages per
second on a 4 core Intel CPU as of 2014.

https://sphincs.cr.yp.to/
36

https://sphincs.cr.yp.to/

New Hope

▸ Published by Erdem Alkim, Leo Ducas, Thomas Poppelmann, and Peter Schwabe in 2015.
▸ Di�e-Hellman like key exchange function, but requires one extra round-trip than
ordinary DH and curve25519.

▸ Aims at providing 2128 bits of post-quantum security, with a "comfortable margin".
▸ 1824 bytes public keys, 1792 bytes secret keys, 32 bytes for shared secret.
▸ Proposed for new Tor handshake: 270 - RebelAlliance: A Post-Quantum Secure Hybrid
Handshake Based on NewHope, by Isis Lovecruft and Peter Schwabe.

▸ Google’s BoringSSL added the cipher suite CECPQ1 in May 2016, which is based on New
Hope and curve25519.

https://github.com/tpoeppelmann/newhope
37

https://github.com/tpoeppelmann/newhope

Questions?

This work is licensed under a

Creative Commons
Attribution-ShareAlike 4.0 International License

cba

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Cryptographic Primitives
	Hash Functions
	Secret-Key Algorithms
	Public-Key Algorithms

	Protocols
	Pretty Good Privacy
	Transport Layer Security
	Transport Layer Security
	Off The Record
	Signal

	Post-quantum Cryptography
	Shor's Algorithm
	Grover's Algorithm
	SPHINCS-256
	New Hope

