
Everyday Cryptography

Alexander Færøy

The Camp

July 26, 2016

mailto:ahf@0x90.dk


Table of Contents

Cryptographic Primitives
Hash Functions
Secret-Key Algorithms
Public-Key Algorithms

Protocols
Pretty Good Privacy
Transport Layer Security
Transport Layer Security
O� The Record
Signal

Post-quantum Cryptography
Shor’s Algorithm
Grover’s Algorithm
SPHINCS-256
New Hope

1



Cryptographic Primitives
Entropy

/dev/random and /dev/urandom.
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Cryptographic Primitives
Bits of Security

▸ To help comparing systems and pick "compatible" building blocks, we measure
cryptosystems in bits of security.

▸ The number of bits is used to describe the amount of work an adversary will have to
complete before they will be able to compromise or weaken our system.
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Cryptographic Primitives
Xor

0⊕ 0 = 0
0⊕ 1 = 1
1⊕ 0 = 1
1⊕ 1 = 0
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Cryptographic Primitives
Xor

"foobar"⊕ "abcdef" = 7, 13, 12, 6, 4, 20

7, 13, 12, 6, 4, 20⊕ "abcdef" = "foobar"
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Hash Functions

▸ A cryptography hash function is a
function that takes an arbitrary length
input and returns a �xed length output.

▸ Computing y = f (x) should be "fast", but
computing the inverse function
x = f ′(y)must beNP-hard.

▸ Even minor, single bit, modi�cations to
the input must yield a di�erent output
value.

▸ As of 2016, we mostly use SHA-2 and
newer functions in our protocols.

▸ Do NOT use MD5, RIPEMD-160, and SHA-1
anywhere.

▸ For new code: Use SHA-3.

"Hello world"

Hash

ZOyIygCyaOW6Gj...
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Passphrase Hashing

▸ Commonly used for passphrase storing and for deriving keys for disk encryption.
▸ Currently very popular algorithm is: PBKDF2 with a salt.
▸ Modern choices: Argon2 and scrypt.
▸ One must be careful when making the choice of function since DoS attacks might
become possible.

https://password-hashing.net/
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Secret-Key Algorithms

▸ A crypto system where both parties must agree on a key before they can exchange
encrypted data.

▸ The oldest cryptography systems we have.
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Camp Cipher

$ python
>>> import camp
>>> camp.encrypt("foobar", "Hello world!")
'LgoDDg5SEQAdDgVT '

>>> camp.decrypt("foobar", "LgoDDg5SEQAdDgVT")
'Hello world!'
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Camp Cipher

import base64

def stream(key , message):

key_length = len(key)
i = 0

r = ""

for char in message:

r += chr(ord(char) ^ ord(key[i % key_length ]))

i += 1

return r

def encrypt(key , message):

return base64.b64encode(stream(key , message))

def decrypt(key , message):

return stream(key , base64.b64decode(message))
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Advanced Encryption Standard

▸ Originally named Rijndael after its
inventors Joan Daemen and Vincent
Rijmen.

▸ Published in 1998.
▸ Won the AES competition in 2001 and
thus superseded the Data Encryption
Standard.

▸ Worth mentioning: Serpent.
▸ CPU support in modern Intel CPU’s.
Allows us to do around 1 GB/sec of AES.

Joan Daemen and Vincent Rijmen.
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Advanced Encryption Standard
ECB Mode
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Advanced Encryption Standard
ECB Mode

Original image. Encrypted with ECB mode. Encrypted with a secure mode.
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Advanced Encryption Standard
CBC Mode
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Advanced Encryption Standard
CTR Mode
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Public-Key Algorithms

▸ Each party have two keys: a secret key and a public key. The public key can be published,
the secret key must remain secret.

▸ Was a major milestone in the 70ies where it became possible.
▸ Often used together with secret key algorithms.
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Di�e-Hellman Key Exchange

▸ Di�e-Hellman key exchange is an
algorithm for establishing a secret key
over an insecure, public, communication
channel.

▸ The cryptosystem was published by
Whit�eld Di�e and Martin E. Hellman in
1976, but was discovered by James H. Ellis,
Cli�ord Cocks, and Malcolm J. Williamson
from GCHQ in 1975, but the discovery was
kept secret until 1997.

▸ Uses the discrete log problem: gx

(mod p) is hard to reverse.
▸ Whit�eld Di�e and Martin E. Hellman
was awarded the A.M. Turing Award in
2015 for their work on cryptography.

Martin E. Hellman and Whit�eld Di�e.
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Di�e-Hellman Key Exchange

Alice Bob

x ←$Zq

gx

y ←$Zq

g y

k← (g y)x k← (gx)y
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Di�e-Hellman Key Exchange

Alice Eve Bob

x ←$Zq

gx

a ←$Zq

ga

y ←$Zq

g y

b ←$Zq

gb

ka ← (gb)x ka ← (gx)b
kb ← (gx)a kb ← (ga)y
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Di�e-Hellman Key Exchange

import random

class DH(object):
def __init__(self , g, p):

self._g = g

self._p = p

def keypair(self):

secret = random.randint(self._g + 1,

self._p - 1)

public = pow(self._g, secret , self._p)

return (secret , public)

def shared(self , secret , public):

return pow(public , secret , self._p)
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Di�e-Hellman Key Exchange

$ openssl dhparam -out params.pem 2048
Generating DH parameters , 2048 bit long safe prime ,

generator 2

This is going to take a long time

............................................++*++*
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Di�e-Hellman Key Exchange

$ openssl dhparam -out params.pem 2048
Generating DH parameters , 2048 bit long safe prime ,

generator 2

This is going to take a long time

............................................++*++*

$ openssl asn1parse -in params.pem
0:d=0 hl=4 l= 264 cons: SEQUENCE

4:d=1 hl=4 l= 257 prim: INTEGER :E490 ...
265:d=1 hl=2 l= 1 prim: INTEGER :02
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Di�e-Hellman Key Exchange

$ openssl dhparam -out params.pem 2048
Generating DH parameters , 2048 bit long safe prime ,

generator 2

This is going to take a long time

............................................++*++*

$ openssl asn1parse -in params.pem
0:d=0 hl=4 l= 264 cons: SEQUENCE

4:d=1 hl=4 l= 257 prim: INTEGER :E490 ...
265:d=1 hl=2 l= 1 prim: INTEGER :02

$ python3 dh.py 02 E490 ...
Alice 's Public Key: 3276 ...
Bob 's Public Key: 2522 ...
Shared Secret: 7481 ...
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RSA

▸ Published in 1977.
▸ Supports both encryption and signatures.
▸ Usually combined with secret key
cryptosystems.

▸ Rivest, Shamir, and Adleman was
awarded the A.M. Turing Award in 2002
for their work on public-key
cryptography.

▸ Large keys: 2048 to 4096 bits today.
▸ Build using prime factorization.

Adi Shamir, Ronald L. Rivest, and Leonard M.
Adleman.
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Curve25519 Key Exchange

▸ Published in 2006 by Daniel J. Bernstein.
▸ ECDH function used to establish a secure
channel over an insecure connection.

▸ 32 bytes public keys, 32 bytes secret keys,
32 bytes shared secrets.

▸ Key generation is very simple:

secret = os.urandom (32)

secret [0] &= 248

secret [31] &= 127

secret [31] = 64

Daniel J. Bernstein.

https://cr.yp.to/ecdh.html
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Ed25519

▸ Publised in 2011 by Daniel J. Bernstein,
Niels Duif, Tanja Lange, Peter Schwabe,
and Bo-Yin Yang.

▸ Signatures are 64 bytes, public keys are 32
bytes, secret keys are 64 bytes.

▸ Provides 2128 bits of security. Equivalent
to a 3000 bits RSA key.

▸ Can generate around 100.000 signature
signatures per second.

▸ Veri�cation performance is bounded by
hashing.

▸ Key generation performance is partially
bounded by the time it takes to read
from /dev/urandom.

▸ Designed with focus on not relying on
branch conditions when working with
the secret key.

Daniel J. Bernstein.

Tanja Lange.

http://ed25519.cr.yp.to/
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Ed25519

$ gpg2 --fingerprint 0xE15081D5D3C3DB53
pub ed25519 /0 xE15081D5D3C3DB53 2015 -02 -14 [SC] [expires: 2020 -02 -28]

Key fingerprint = E265 2A9B 5D17 14B5 5CE3 ADE1 E150 81D5 D3C3 DB53
uid [ultimate] Alexander Faeroey (Code Signing Key) <ahf@0x90.dk>
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Pretty Good Privacy

▸ Published in 1991 by Phil Zimmermann.
▸ Supports RSA, DSA, ElGamal, Ed25519,
and AES.

▸ Veri�cation using web-of-trust and by
having people attending keyparties.

▸ Used for email encryption and
authentication and package
authentication.

▸ Was in the 90ies a�ected by the US
export laws on cryptography.

Philip R. Zimmermann.

https://gnupg.org/
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Transport Layer Security

1. Client connects over TCP to a server, sends random number, and a list of supported
cipher suites.

2. Server sends random number, public key and certi�cate.

3. If supported, the server sends the DH parameters.

4. Client sends random session key, encrypted to the server’s public key.

5. Client sends DH parameters.

6. Moves to secret key communication.
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Transport Layer Security

OpenSSL and LibreSSL.
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O� The Record

▸ End-to-end Encryption for instant
messaging (Jabber, Facebook, Google
Chat).

▸ Provides encryption, authentication,
deniability, and forward secrecy.

▸ Authentication is done with �ngerprint
veri�cation (like with PGP) or Socialist
Millionaires’ Protocol.

▸ Uses Discrete Log Di�e-Hellman, AES-128,
DSA, SHA-1 and SHA-256.

▸ Work is being done onmoving to Ed25519,
Curve25519 and a stronger hash function.

Ian Avrum Goldberg.

https://otr.cypherpunks.ca/
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Signal

▸ Uses Curve25519, 3-DH, HMAC-SHA256
and AES.

▸ Provides forward secrecy and backward
secrecy.

▸ The protocol was originally named
Axolotl.

▸ No focus on anonymity.

Moxie Marlinspike.
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Post-quantum Cryptography

▸ Cryptographers have recently started focusing on cryptography that will work in a world
where an adversary have access to a quantum computer.

▸ RSA is dead, DSA is dead, elliptic and hyperelliptic curves are dead, and discrete
logarithm Di�e-Hellman is dead.

▸ Secret key cryptography still works.
▸ Weakest link in a chain: If your handshake was made using DH and you use the key for a
secret key system it will be dead too.

▸ Current PGP, Tor, TLS, and Signal will be a�ected.

https://pqcrypto.org/
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Shor’s Algorithm

▸ Formulated in 1994 by Peter Shor.
▸ Quantum algorithm for integer
factorization: "given an integer, N �nd its
prime factors".

▸ In 2012, researches was able to factorize
21 into 3 and 7.

▸ Will break current RSA usage, if we have
access to a 2048 to 4096 qubit quantum
computers.

Peter Williston Shor.
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Grover’s Algorithm

▸ Formulated in 1996 by Lov Grover.
▸ Probalistic quantum algorithm for �nding
the unique input to a given blackbox
function.

▸ Classical computers can do this operation
inO(N) and due to Grover’s algorithm,
quantum computers will be able to do it
inO(N 1/2

).
▸ Will weaken secret key cryptography like
AES, by reducing the security. Lov Kumar Grover.
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SPHINCS-256

▸ Published by Daniel J. Bernstein, Daira
Hopwood, Andreas Hülsing, Tanja Lange,
Ruben Niederhagen, Louiza
Papachristodoulou, Michael Schneider,
Peter Schwabe, and Zooko
Wilcox-O’Hearn in 2014.

▸ Very large signatures: 41.000 bytes, public
and secret keys are at 1024 bytes each.

▸ Aims at providing 2128 bits of
post-quantum security.

▸ Can be used as a drop in replacement for
already established systems. For example
RSA or ed25519 signatures.

▸ Is able to sign hundreds of messages per
second on a 4 core Intel CPU as of 2014.

https://sphincs.cr.yp.to/
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New Hope

▸ Published by Erdem Alkim, Leo Ducas, Thomas Poppelmann, and Peter Schwabe in 2015.
▸ Di�e-Hellman like key exchange function, but requires one extra round-trip than
ordinary DH and curve25519.

▸ Aims at providing 2128 bits of post-quantum security, with a "comfortable margin".
▸ 1824 bytes public keys, 1792 bytes secret keys, 32 bytes for shared secret.
▸ Proposed for new Tor handshake: 270 - RebelAlliance: A Post-Quantum Secure Hybrid
Handshake Based on NewHope, by Isis Lovecruft and Peter Schwabe.

▸ Google’s BoringSSL added the cipher suite CECPQ1 in May 2016, which is based on New
Hope and curve25519.

https://github.com/tpoeppelmann/newhope
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Questions?
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