
Git
Source code management the UNIX way

Jesper Louis Andersen Alexander Færøy

October 24, 2009

mailto:jesper.louis.andersen@gmail.com
mailto:ahf@0x90.dk


Table of Contents

Introduction

Storage Model

Practical git

Question Time



The History of Git

I Initially designed by Linus Torvalds.

I Git became self-hosted on April 7, 2005.

I The Linux Kernel project moved to Git 9 days later.

I Today, thousands of projects.



What is?

I Storage system (Persistence).

I Revision control on top.

I UNIX philosophy in the tool-set.

I Key advantage: Flexibility, speed.

I Key disadvantage: Relatively steep learning curve.



What can it do?

I Projects evolve.

I Git, like SVN, Darcs, CVS, Hg and Bazaar, manages project.
data, tracks history, facilitates collaboration etc.



Concept: Persistence

I Databases.

I Functional languages.

I Accounting/Finance.

I Never overwrite old data.

I Git breaks the rules in a few places.



Term: Blob

I A Blob stores content, ie what is in a file.

I Compressed, for saving storage and disk reads.

I Identified by an SHA1 checksum.

I Note that SHA1 is 2nd preimage resistant (still).



Term: Tree

I A Tree contains a list of references paired with meta-data.

I References points to either blobs or other trees.

I This is used to map (among other things) the directory
structure.

I Identified by an SHA1 checksum.



Term: Commit

I A Commit references a Tree and some parent commits.

I Identified by an SHA1 checksum.

I Consistency: Use the SHA1-sums.



Term: Tag

I A Tag is a reference to a Commit.

I These beasts can be cryptographically signed.



For functional programmers

type meta;
datatype blob = BLOB of (Word8.word vector)

datatype tree = TREE of { name : string,
content : tree_content } list

and tree_content = TC_Tree of tree * meta
| TC_Blob of blob * meta

datatype commit = COMMIT of { parents : commit list,
author : string,
date : Date.date,
message : string,
t : tree }



Concept: Storage principles

I Reuse existing subtrees (dedup).

I Always write a new object.



Concept: Packs

I A pack compresses a set of objects into a single file.

I Delta Compression: Order objects by (type, basename, desc.
size) lexicographically.

I Delta Compression: Run a sliding window on the order, search
for delta-coding opportunities.

I Storage: Recency ordered in the pack from the HEAD.

I Storage: Good locality.

I Only “destructive operation” – fsync().

I Ideas the same as garbage collection.



Concept: Index

Conceptual Index location:

WorkingDir ↔ Index ↔ Storage



Concept: Index(2)

I Index is mutable, storage is immutable.

I UI View: Staging area for the next commit.

I Backend View: Directory cache for speeding up operations.

I Git owes much of its speed to the index.



Term: Refs

I A Ref is a stick-it-note we can place on a commit.

I Refs are used for branches, different paths in development.

I Refs are used for certain magic markers in the storage tree.

I Some refs are local, other are remote.



Concept: Distribution

I Distribution happens by cloning the repository – copying all
its contents.

I The storage model makes this approach feasible.

I Fetches: Copy the difference, track where the refs moved to.

I Pushes: Copy the difference, track where the refs moved to.



How to start

I Grab a tutorial.

I We think you gained a lot with the knowledge about the
storage.



git add

I When you run git add, you add things to the index.

I git commit snapshots what is in the index alone.



merge/rebase

There is a difference between merge and rebase. Usually you want
to rebase in git:

A---B---C topic
/

D---E---F---G master

A--B--C topic
/

D---E---F---G master



merge/rebase (2)

I Note: Patches already in upstream are skipped.

I Keeps a linear development path – easier to track for other
people.

I As long as history is local it can be rewritten! (Persistence
break!)

I Do not rewrite public branches, or people can’t track it.



Moving files

I Controversy: git does not track that a file has been moved. It
tracks it as a content change.

I A heuristic decides if the file is a move when browsing.

I Usually gets it right in most cases.



Publishing your changes

I One simple way is github.com or gitorius.org.

I Provides an outlet for publishing your tree.

I For internal hosting at companies, either pay Github, or

I Use a web-interface on top of a repository, or

I Use no central repository system at all!



Editor integration etc.

I Emacs: magit-mode.

I Vim: There is git-vim, or just use the command line.

I gitk – interface to git via Tk.



Question Time

I Questions from the audience?

I http://github.com/ahf/sslug-workshop-git/

http://github.com/ahf/sslug-workshop-git/

	Introduction
	Storage Model
	Practical git
	Question Time

